Claim: In triangle $A B C, D$ is the mid point of $B C$,
then $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$

$A B C$ is a triangle, in which $A D$ is a median on $B C$. construction :- draw a line AM perpendicular to BC .
we have to prove : $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
proof :-
case 1 :- when $\angle A D C=\angle A D B$, it means AD is perpendicular on BC and both angles are right angle e.g., 90°
then, from $\triangle A D B$,
according to Pythagoras theorem,
$A B^{2}=A D^{2}+B D^{2}$
from $\triangle A D C$,
according to Pythagoras theorem,
$A C^{2}=A D^{2}+D C^{2}$
$\because A D$ is median.
so, $B D=D C$
from equations (1), (2) and (3),
$A B^{2}+A C^{2}=A D^{2}+A D^{2}+B D^{2}+B D^{2}$
$A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$ [hence proved $]$

case 2 :- when $\angle A D B \neq \angle A D C$

Let us consider that, ADB is an obtuse angle.
from $\triangle A B M$,
from Pythagoras theorem,
$A B^{2}=A M^{2}+B M^{2}$
$A B^{2}=A M^{2}+(B D+D M)^{2}$
$A B^{2}=A M^{2}+B D^{2}+D M^{2}+2 B D . D M$
from $\triangle A C M$,
according to Pythagoras theorem,
$A C^{2}=A M^{2}+C M^{2}$
$A C^{2}=A M^{2}+(D C-D M)^{2}$
$A C^{2}=A M^{2}+D^{2}+\mathrm{DM}^{2}-2 D C . D M . \ldots$
from equations (1) and (2),
$A B^{2}+A C^{2}=2 A M^{2}+B D^{2}+D C^{2}+2 D M^{2}+2 B D \cdot D M-2 D C \cdot D M$
$A B^{2}+A C^{2}=2\left(A M^{2}+D M^{2}\right)+B D^{2}+D C^{2}+2(B D \cdot D M-D C . D M)$
a / c to question, $A D$ is median on $B C$.
so, $B D=D C$
and from ADM,
according to Pythagoras theorem,
$A D^{2}=A M^{2}+D M^{2}$
putting equation (4) and equation (5) in equation (3),
$A B^{2}+A C^{2}=2 A D^{2}+2 B D^{2}+2(B D \cdot D M-B D \cdot D M)$
$A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)[$ hence proved $]$.

Now the given ques on:

From the figure $B O \| D C$ (Extended $B O$ and $D C$ are both perpendicular to $A C$.
$O C|\mid B D$, (Extended $C O$ and $D B$ are perpendicular to $A B$)
Hence BOCD is a parallelogram.
$B F=C F$ and $D F=O F$. (Diagonal bisect each other)
In triangle $E B C, F$ is the mid point of $B C$, we can write (From the above claim)
$B E^{2}+E C^{2}=2\left(E F^{2}+B F^{2}\right)$
And in triangle DBC, F is the mid point of BC , we can write (From the above claim)
$C D^{2}+D B^{2}=2\left(D F^{2}+B F^{2}\right)$
By adding (1) and (2)
We can write $B E^{2}+E C^{2}+C D^{2}+D B^{2}=2\left(E F^{2}+B F^{2}+D F^{2}+B F^{2}\right)$
$\Rightarrow B E^{2}+E C^{2}+C D^{2}+D B^{2}=2\left(E F^{2}+D F^{2}+2 B F^{2}\right)$
$\Rightarrow B E^{2}+E C^{2}+C D^{2}+D B^{2}=2\left(E F^{2}+D F^{2}+2 B F \times C F\right) \quad(\mathrm{As} \mathrm{BF}=\mathrm{CF})$
$\Rightarrow B E^{2}+E C^{2}+C D^{2}+D B^{2}=2\left(E F^{2}+D F^{2}+2 E F \times D F\right)$
(AS BF×CF=EF×DF) two chord of circle intersect at F
$\Rightarrow B E^{2}+E C^{2}+C D^{2}+D B^{2}=2(E F+D F)^{2}$
$\Rightarrow B E^{2}+E C^{2}+C D^{2}+D B^{2}=2 D E^{2} \quad$ (Proved)

